Poisson Traces for Symmetric Powers of Symplectic Varieties

نویسنده

  • PAVEL ETINGOF
چکیده

We compute the space of Poisson traces on symmetric powers of affine symplectic varieties. In the case of symplectic vector spaces, we also consider the quotient by the diagonal translation action, which includes the quotient singularities T C/Sn associated to the type A Weyl group Sn and its reflection representation C . We also compute the full structure of the natural D-module, previously defined by the authors, whose solution space over algebraic distributions identifies with the space of Poisson traces. As a consequence, we deduce bounds on the numbers of finite-dimensional irreducible representations and prime ideals of quantizations of these varieties. Finally, motivated by these results, we pose conjectures on symplectic resolutions, and give related examples of the natural D-module. In an appendix, the second author computes the Poisson traces and associated D-module for the quotients T C/Dn associated to type D Weyl groups. In a second appendix, the same author provides a direct proof of one of the main theorems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson traces, D-modules, and symplectic resolutions

We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a ...

متن کامل

Pavel Etingof and Travis Schedler with an Appendix by Ivan Losev

To every Poisson algebraic variety X over an algebraically closed field of characteristic zero, we canonically attach a right D-module M(X) on X . If X is affine, solutions of M(X) in the space of algebraic distributions on X are Poisson traces on X , i.e., distributions invariant under Hamiltonian flows. When X has finitely many symplectic leaves, we prove that M(X) is holonomic. Thus, when X ...

متن کامل

Poisson Structures on Affine Spaces and Flag Varieties

The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...

متن کامل

Poisson Structures on Affine Spaces and Flag Varieties . Ii

The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...

متن کامل

Dirac submanifolds and Poisson involutions

Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011